Correlation of image textures of a polarization feature parameter and the microstructures of liver fibrosis tissues

Author:

Yao Yue1ORCID,Wan Jiachen1,Zhang Fengdi1,Dong Yang1,Chen Lihong234,Ma Hui15ORCID

Affiliation:

1. Tsinghua Shenzhen International Graduate School, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen 518055, P. R. China

2. Fujian Medical University, Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fuzhou 350014, P. R. China

3. Fujian Medical University, Diagnostic Pathology Center, Fuzhou 350014, P. R. China

4. Fujian Medical University, Mengchao Hepatobiliary Hospital, Fuzhou 350014, P. R. China

5. Tsinghua University, Department of Physics, Beijing 100084, P. R. China

Abstract

Mueller matrix imaging is emerging for the quantitative characterization of pathological microstructures and is especially sensitive to fibrous structures. Liver fibrosis is a characteristic of many types of chronic liver diseases. The clinical diagnosis of liver fibrosis requires time-consuming multiple staining processes that specifically target on fibrous structures. The staining proficiency of technicians and the subjective visualization of pathologists may bring inconsistency to clinical diagnosis. Mueller matrix imaging can reduce the multiple staining processes and provide quantitative diagnostic indicators to characterize liver fibrosis tissues. In this study, a fiber-sensitive polarization feature parameter (PFP) was derived through the forward sequential feature selection (SFS) and linear discriminant analysis (LDA) to target on the identification of fibrous structures. Then, the Pearson correlation coefficients and the statistical [Formula: see text]-tests between the fiber-sensitive PFP image textures and the liver fibrosis tissues were calculated. The results show the gray level run length matrix (GLRLM)-based run entropy that measures the heterogeneity of the PFP image was most correlated to the changes of liver fibrosis tissues at four stages with a Pearson correlation of 0.6919. The results also indicate the highest Pearson correlation of 0.9996 was achieved through the linear regression predictions of the combination of the PFP image textures. This study demonstrates the potential of deriving a fiber-sensitive PFP to reduce the multiple staining process and provide textures-based quantitative diagnostic indicators for the staging of liver fibrosis.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3