Active wavefront shaping for controlling and improving multimode fiber sensor

Author:

Zhong Tianting12ORCID,Yu Zhipeng12,Li Huanhao12,Li Zihao2ORCID,Li Haohong3,Lai Puxiang12

Affiliation:

1. Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, P. R. China

2. Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen 518057, P. R. China

3. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China

Abstract

Wavefront shaping (WFS) techniques have been used as a powerful tool to control light propagation in complex media, including multimode fibers. In this paper, we propose a new application of WFS for multimode fiber-based sensors. The use of a single multimode fiber alone, without any special fabrication, as a sensor based on the light intensity variations is not an easy task. The twist effect on multimode fiber is used as an example herein. Experimental results show that light intensity through the multimode fiber shows no direct relationship with the twist angle, but the correlation coefficient (CC) of speckle patterns does. Moreover, if WFS is applied to transform the spatially seemingly random light pattern at the exit of the multimode fiber into an optical focus. The focal pattern correlation and intensity both can serve to gauge the twist angle, with doubled measurement range and allowance of using a fast point detector to provide the feedback. With further development, WFS may find potentials to facilitate the development of multimode fiber-based sensors in a variety of scenarios.

Funder

Shenzhen Science and Technology Innovation Commission

Hong Kong Innovation and Technology Commission

Hong Kong Research Grant Council

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3