LGNet: Local and global representation learning for fast biomedical image segmentation

Author:

Xu Guoping1,Zhang Xuan1,Liao Wentao1,Chen Shangbin2,Wu Xinglong12ORCID

Affiliation:

1. School of Computer Science & Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China

2. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China

Abstract

Medical image segmentation plays a crucial role in clinical diagnosis and therapy systems, yet still faces many challenges. Building on convolutional neural networks (CNNs), medical image segmentation has achieved tremendous progress. However, owing to the locality of convolution operations, CNNs have the inherent limitation in learning global context. To address the limitation in building global context relationship from CNNs, we propose LGNet, a semantic segmentation network aiming to learn local and global features for fast and accurate medical image segmentation in this paper. Specifically, we employ a two-branch architecture consisting of convolution layers in one branch to learn local features and transformer layers in the other branch to learn global features. LGNet has two key insights: (1) We bridge two-branch to learn local and global features in an interactive way; (2) we present a novel multi-feature fusion model (MSFFM) to leverage the global contexture information from transformer and the local representational features from convolutions. Our method achieves state-of-the-art trade-off in terms of accuracy and efficiency on several medical image segmentation benchmarks including Synapse, ACDC and MOST. Specifically, LGNet achieves the state-of-the-art performance with Dice’s indexes of 80.15% on Synapse, of 91.70% on ACDC, and of 95.56% on MOST. Meanwhile, the inference speed attains at 172 frames per second with [Formula: see text] input resolution. The extensive experiments demonstrate the effectiveness of the proposed LGNet for fast and accurate for medical image segmentation.

Funder

Open-Fund of WNLO

Hubei Key Laboratory of Intelligent Robot in Wuhan Institute of Technology

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MGFuseSeg: Attention-Guided Multi-Granularity Fusion for Medical Image Segmentation;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation;Pattern Recognition;2023-11

3. Introduction to the special issue on multiphoton imaging and quantitative characterization;Journal of Innovative Optical Health Sciences;2023-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3