Tunable absorption characteristics in multilayered structures with graphene for biosensing

Author:

Jin Li1ORCID,Zhou Jun2ORCID,Lai Puxiang1ORCID

Affiliation:

1. Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, P. R. China

2. Department of Microelectronic Engineering, School of Physical Science & Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China

Abstract

Graphene derivatives, possessing strong Raman scattering and near-infrared absorption intrinsically, have boosted many exciting biosensing applications. The tunability of the absorption characteristics, however, remains largely unexplored to date. Here, we proposed a multilayer configuration constructed by a graphene monolayer sandwiched between a buffer layer and one-dimensional photonic crystal (1DPC) to achieve tunable graphene absorption under total internal reflection (TIR). It is interesting that the unique optical properties of the buffer-graphene-1DPC multilayer structure, the electromagnetically induced transparency (EIT)-like and Fano-like absorptions, can be achieved with pre-determined resonance wavelengths, and furtherly be tuned by adjusting either the structure parameters or the incident angle of light. Theoretical analyses demonstrate that such EIT- and Fano-like absorptions are due to the interference of light in the multilayer structure and the complete transmission produced by the evanescent wave resonance in the configuration. The enhanced absorptions and the huge electrical field enhancement effect exhibit potentials for broad applications, such as photoacoustic imaging and Raman imaging.

Funder

National Natural Science Foundation of China

Hong Kong Research Grant Council

Innovation and Technology Commission - Hong Kong

Guangdong Science and Technology Commission

Shenzhen Science and Technology Innovation Commission

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3