Optical penetration of surface-enhanced micro-scale spatial offset Raman spectroscopy in turbid gel and biological tissue

Author:

Zhang Yumin1ORCID,Lin Li1ORCID,He Jing1,Ye Jian12ORCID

Affiliation:

1. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China

2. Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China

Abstract

The limited penetration of photons in biological tissue restricts the deep-tissue detection and imaging application. The micro-scale spatially offset Raman spectroscopy (micro-SORS) with an optical fiber probe, colleting photons from deeper regions by offsetting the position of laser excitation from the collection optics in a range of hundreds of microns, shows great potential to be integrated with endoscopy for inside-body noninvasive detection by circumventing this restriction, particularly with the combination of surface-enhanced Raman spectroscopy (SERS). However, a detailed tissue penetration study of micro-SORS in combination with SERS is still lacking. Herein, we compared the signal decay of enhanced Raman nanotags through the tissue phantom of agarose gel and the biological tissue of porcine muscle in the near-infrared (NIR) region using a portable Raman spectrometer with a micro-SORS probe (2.1[Formula: see text]mm in diameter) and a conventional hand-held probe (9.7[Formula: see text]mm in diameter). Two kinds of Raman nanotags were prepared from gold nanorods decorated with the nonresonant (4-nitrobenzenethiol) or resonant Raman reporter molecules (IR-780 iodide). The SERS measurements show that the penetration depths of two Raman nanotags are both over 2[Formula: see text]cm in agarose gel and 3[Formula: see text]mm in porcine muscle. The depth could be improved to over 4[Formula: see text]cm in agarose gel and 5[Formula: see text]mm in porcine tissue when using the micro-SORS system. This demonstrates the superiority of optical-fiber micro-SORS system over the conventional Raman detection for the detection of nanotags in deeper layers in the turbid medium and biological tissue, offering the possibility of combining the micro-SORS technique with SERS for noninvasive in vivo endoscopy-integrated clinical application.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Science and Technology Commission of Shanghai Municipality

Innovation Research Plan supported by Shanghai Municipal Education Commission

Shanghai Jiao Tong University

the Shanghai Key Laboratory of Gynecologic Oncology

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3