Motor network reorganization in stroke patients with dyskinesias during a shoulder-touching task: A fNIRS study

Author:

Zhang Yizheng1,Wang Dan2,Wang Dongyang1,Yan Kecheng1,Yi Li1,Lin Shuoshu1,Shao Guangjian1,Shao Zhiyong1,Sun Jinyan3ORCID,Yang Aoran2

Affiliation:

1. School of Mechatronic Engineering and Automation, Foshan University, Foshan, P. R. China

2. Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, P. R. China

3. School of Medicine, Foshan University, Foshan, P. R. China

Abstract

Hemiplegia after stroke has become a major cause of the world’s high disabilities, and it is vital to enhance our understanding of post-stroke neuroplasticity to develop efficient rehabilitation programs. This study aimed to explore the brain activation and network reorganization of the motor cortex (MC) with functional near-infrared spectroscopy (fNIRS). The MC hemodynamic signals were gained from 22 stroke patients and 14 healthy subjects during a shoulder-touching task with the right hand. The MC activation pattern and network attributes analyzed with the graph theory were compared between the two groups. The results revealed that healthy controls presented dominant activation in the left MC while stroke patients exhibited dominant activation in the bilateral hemispheres MC. The MC networks for the two groups had small-world properties. Compared with healthy controls, patients had higher transitivity and lower global efficiency (GE), mean connectivity, and long connections (LCs) in the left MC. In addition, both MC activation and network attributes were correlated with patient’s upper limb motor function. The results showed the stronger compensation of the unaffected motor area, the better recovery of the upper limb motor function for patients. Moreover, the MC network possessed high clustering and relatively sparse inter-regional connections during recovery for patients. Our results promote the understanding of MC reorganization during recovery and indicate that MC activation and network could provide clinical assessment significance in stroke patients. Given the advantages of fNIRS, it shows great application potential in the assessment and rehabilitation of motor function after stroke.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Key Laboratory Program of Guangdong Higher Education Institutes

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3