Three-dimensional remodeling of collagen fibers within cervical tissues in pregnancy

Author:

Zhou Lingxi1,Jiang Rushan1,Meng Jia1,Qian Shuhao1,Jiang Shenyi1,Wang Chuncheng1,Yang Chen1,Ding Zhihua1,Shu Zheyue2,Liu Zhiyi13ORCID

Affiliation:

1. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

2. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027 P. R. China

3. Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, Zhejiang 314000, P. R. China

Abstract

The cervix is a collagen-rich connective tissue that must remain closed during pregnancy while undergoing progressive remodeling in preparation for delivery, which begins before the onset of the preterm labor process. Therefore, it is important to resolve the changes of collagen fibers during cervical remodeling for the prevention of preterm labor. Herein, we assessed the spatial organization of collagen fibers in a three-dimensional (3D) context within cervical tissues of mice on day 3, 9, 12, 15 and 18 of gestation. We found that the 3D directional variance, a novel metric of alignment, was higher on day 9 than that on day 3 and then gradually decreased from day 9 to day 18. Compared with two-dimensional (2D) approach, a higher sensitivity was achieved from 3D analysis, highlighting the importance of truly 3D quantification. Moreover, the depth-dependent variation of 3D directional variance was investigated. By combining multiple 3D directional variance-derived metrics, a high level of classification accuracy was acquired in distinguishing different periods of pregnancy. These results demonstrate that 3D directional variance is sensitive to remodeling of collagen fibers within cervical tissues, shedding new light on highly-sensitive, early detection of preterm birth (PTB).

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Natural Science Foundation of Zhejiang Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3