Differentiation of different antifungals with various mechanisms using dynamic surface-enhanced Raman spectroscopy combined with machine learning

Author:

Li Hao123,Cao Yongbing4,Lu Feng15

Affiliation:

1. School of Pharmacy, Naval Medical University, Shanghai 200433, P. R. China

2. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China

3. Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China

4. Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P. R. China

5. Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, P. R. China

Abstract

With the increase in mortality caused by pathogens worldwide and the subsequent serious drug resistance owing to the abuse of antibiotics, there is an urgent need to develop versatile analytical techniques to address this public issue. Vibrational spectroscopy, such as infrared (IR) or Raman spectroscopy, is a rapid, noninvasive, nondestructive, real-time, low-cost, and user-friendly technique that has recently gained considerable attention. In particular, surface-enhanced Raman spectroscopy (SERS) can provide a highly sensitive readout for bio-detection with ultralow or even trace content. Nevertheless, extra attachment cost, nonaqueous acquisition, and low reproducibility require the conventional SERS (C-SERS) to further optimize the conditions. The emergence of dynamic SERS (D-SERS) sheds light on C-SERS because of the dispensable substrate design, superior enhancement and stability of Raman signals, and solvent protection. The powerful sensitivity enables D-SERS to perform only with a portable Raman spectrometer with moderate spatial resolution and precision. Moreover, the assistance of machine learning methods, such as principal component analysis (PCA), further broadens its research depth through data mining of the information within the spectra. Therefore, in this study, D-SERS, a portable Raman spectrometer, and PCA were used to determine the phenotypic variations of fungal cells Candida albicans (C. albicans) under the influence of different antifungals with various mechanisms, and unknown antifungals were predicted using the established PCA model. We hope that the proposed technique will become a promising candidate for finding and screening new drugs in the future.

Funder

Ministry of Science and Technology

Military Biosafety Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3