A system for detection of cervical precancerous in field emission scanning electron microscope images using texture features

Author:

Jusman Yessi12,Ng Siew-Cheok1,Hasikin Khairunnisa1,Kurnia Rahmadi3,Abu Osman Noor Azuan1,Teoh Kean Hooi4

Affiliation:

1. Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

2. Department of Informatics Engineering, Faculty of Engineering, Universitas Abdurrab, 28291 Pekanbaru, Riau, Indonesia

3. Department of Electrical Engineering, Faculty of Engineering, Andalas University, Limau Manis Campus, 25163 Padang, Sumatera Barat, Indonesia

4. Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy (FE-SEM) images. The processing scheme adopted in the proposed system focused on two steps. The first step was to enhance cervical cell FE-SEM images in order to show the precancerous characterization indicator. A problem arises from the question of how to extract features which characterize cervical precancerous cells. For the first step, a preprocessing technique called intensity transformation and morphological operation (ITMO) algorithm used to enhance the quality of images was proposed. The algorithm consisted of contrast stretching and morphological opening operations. The second step was to characterize the cervical cells to three classes, namely normal, low grade intra-epithelial squamous lesion (LSIL), and high grade intra-epithelial squamous lesion (HSIL). To differentiate between normal and precancerous cells of the cervical cell FE-SEM images, human papillomavirus (HPV) contained in the surface of cells were used as indicators. In this paper, we investigated the use of texture as a tool in determining precancerous cell images based on the observation that cell images have a distinct visual texture. Gray level co-occurrences matrix (GLCM) technique was used to extract the texture features. To confirm the system’s performance, the system was tested using 150 cervical cell FE-SEM images. The results showed that the accuracy, sensitivity and specificity of the proposed system are 95.7%, 95.7% and 95.8%, respectively.

Funder

UM Postgraduate Research Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3