FUZZY C-MEANS IN FINDING SUBTYPES OF CANCERS IN CANCER DATABASE

Author:

KANNAN S. R.1,RAMTHILAGAM S.2,DEVI R.1,HONG T. P.3

Affiliation:

1. Department of Mathematics, Pondicherry Central University, India

2. Department of Mathematics, Periyar Government College, Tamil Nadu, India

3. Department of Computer Science and Information Engineering, National University of Kaohsiung, Taiwan

Abstract

Finding subtypes of cancer in breast cancer database is an extremely difficult task because of heavy noise by measurement error. Most of the recent clustering techniques for breast cancer database to achieve cancerous and noncancerous often weigh down the interpretability of the structure. Hence, this paper tries to find effective Fuzzy C-Means-based clustering techniques to identify the proper subtypes of cancer in breast cancer database. This paper obtains the objective function of effective Fuzzy C-Means clustering techniques by incorporating the kernel induced distance function, Renyi's entropy function, weighted distance measure and neighborhood terms-based spatial context. The effectiveness of the proposed methods are proved through the experimental works on Lung cancer database, IRIS dataset, Wine dataset, Checkerboard dataset, Time Series dataset and Yeast dataset. Finally, the proposed methods are implemented successfully to cluster the breast cancer database into cancerous and noncancerous. The clustering accuracy has been validated through error matrix and silhouette method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Breast Cancer using Fast Fuzzy Clustering based on Kernel;IOP Conference Series: Materials Science and Engineering;2019-06-01

2. Multiple fuzzy c-means clustering algorithm in medical diagnosis;Technology and Health Care;2015-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3