Artificial neural network-based determination of denoised optical properties in double integrating spheres measurement

Author:

Takai Yusaku1,Nishimura Takahiro1,Shimojo Yu1,Awazu Kunio12

Affiliation:

1. Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

2. Global Center for Medical Engineering and Informatics, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan

Abstract

Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications. The absorption ([Formula: see text]) and scattering ([Formula: see text]) coefficients of biological tissues are inversely analyzed from their diffuse reflectance (R) and total transmittance (T), which are measured using a double integrating spheres (DIS) system. The inversion algorithms, for example, inverse adding doubling method and inverse Monte Carlo method, are sensitive to noise signals during the DIS measurements, resulting in reduced accuracy during determination. In this study, we propose an artificial neural network (ANN) to estimate [Formula: see text] and [Formula: see text] at a target wavelength from the R and T spectra measured via the DIS to reduce noise in the optical properties. Approximate models of the optical properties and Monte Carlo calculations that simulated the DIS measurements were used to generate spectral datasets comprising [Formula: see text], [Formula: see text], R and T. Measurement noise signals were added to R and T, and the ANN model was then trained using the noise-added datasets. Numerical results showed that the trained ANN model reduced the effects of noise in [Formula: see text] and [Formula: see text] estimation. Experimental verification indicated noise-reduced estimation from the R and T values measured by the DIS with a small number of scans on average, resulting in measurement time reduction. The results demonstrated the noise robustness of the proposed ANN-based method for optical properties determination and will contribute to shorter DIS measurement times, thus reducing changes in the optical properties due to desiccation of the samples.

Funder

Japan Society for the Promotion of Science

ACT-X

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3