Cerebrospinal fluid and blood biomarkers in the diagnostic assays of Alzheimer’s disease

Author:

Zhang Liding12,Liang Xiaohan12,Zhang Zhihong12,Luo Haiming12

Affiliation:

1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China

2. MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China

Abstract

The anti-amyloid-β (anti-Aβ) fibrils and soluble oligomers antibody aducanumab were approved to effectively slow down the progression of Alzheimer’s disease (AD) at higher doses in 2019, reaffirming the therapeutic effects of targeting the core pathology of AD. A timely and accurate diagnosis in the prodromal or pre-dementia stage of AD is essential for patient recruitment, stratification, and monitoring of treatment effects. AD core biomarkers amyloid-β (Aβ1−42), total tau (t-tau), and phosphorylated tau (p-tau) have been clinically validated to reflect AD-type pathological changes through cerebrospinal fluid (CSF) measurement or positron-emission tomography (PET) and found to have high diagnostic performance for AD identification in the stage of mild cognitive impairment. The development of ultrasensitive immunoassay technology enables AD pathological proteins such as tau and neurofilament light (NFL) to be measured in blood samples. However, combined biomarker detection or targeting multiple biomarkers in immunoassays will increase detection sensitivity and specificity and improve diagnostic accuracy. This review summarizes and analyzes the performance of current detection methods for early diagnosis of AD, and provides a concept of detection method based on multiple biomarkers instead of a single target, which may become a potential tool for early diagnosis of AD in the future.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3