PHOTOSWITCHABLE NANOFLUOROPHORES FOR INNOVATIVE BIOIMAGING

Author:

ZHU MING-QIANG1,ZHANG GUO-FENG1,LI CHONG1,LI YA-JING1,ALDRED MATTHEW P.1,LI ALEXANDER D. Q.2

Affiliation:

1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

2. Department of Chemistry, Washington State University, Pullman, WA 99164, USA

Abstract

Photosensitive fluorescent probes have become powerful tools in chemical biology and molecular biophysics, which are used to investigate cellular processes with high temporal and spatial resolution. Accordingly, photosensitive fluorescent probes, including photoactivatable, photoconvertible, and photoswitchable fluorophores, have been extensively developed during the past decade. The photoswitchable fluorophores have received much attention because they highlight cellular events clearly. This minireview summarizes recent advances of using reversibly photoswitchable fluorophores and their applications in innovative bioimaging. Photoswitchable fluorophores include photoswitchable fluorescent proteins, photoswitchable fluorescent organic molecules (dyes), and photoswitchable fluorescent nanoparticles. Several strategies have been developed to synthesize photoswitchable fluorophores, including engineering combination proteins, chemical synthesis, polymerization, and self-assembly. Here we concentrate on polymer nanoparticles with optically switchable emission properties: either fluorescence on/off or dual-alternating-color fluorescence photoswitching. The essential mechanisms of fluorescence photoswitching enable different types of photoswitchable fluorophores to change emission intensity or wavelength (color) and thus validating the basis of the fluorescence on/off or dual-color photoswitching design. Generally the possible applications of any fluorophores are to label biological targets, followed by specific imaging. The newly developed photoswitchable fluorophores enable super-resolution fluorescence imaging because of their photosensitive emission. Finally, we summarize the important area regarding future research and development on photoswitchable fluorescent nanoparticles.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3