Overview of novel nanobiosensors for electrochemical and optical diagnosis of leukemia: Challenge and opportunity

Author:

Farahdina Ulya1,Amrillah Tahta2ORCID,Mashuri Mashuri3,Lee Vannajan Sanghiran4,Rubiyanto Agus1,Nasori Nasori1ORCID

Affiliation:

1. Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

2. Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia

3. Department of Industrial Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

4. Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia

Abstract

Leukemia is one of the ten types of cancer that causes the biggest death in the world. Compared to other types of cancer, leukemia has a low life expectancy, so an early diagnosis of the cancer is necessary. A new strategy has been developed to identify various leukemia biomarkers by making blood cancer biosensors, especially by developing nanomaterial applications so that they can improve the performance of the biosensor. Although many biosensors have been developed, the detection of leukemia by using nanomaterials with electrochemical and optical methods is still less carried out compare to other types of cancer biosensors. Even the acoustic and calorimetric testing methods for the detection of leukemia by utilizing nanomaterials have not yet been carried out. Most of the reviewed works reported the use of gold nanoparticles and electrochemical characterization methods for leukemia detection with the object of study being conventional cancer cells. In order to be used clinically by the community, future research must be carried out with a lot of patient blood objects, develop non-invasive leukemia detection, and be able to detect all types of blood cancer specifically with one biosensor. This can lead to a fast and accurate diagnosis thus allowing for early treatment and easy periodic condition monitoring for various types of leukemia based on its biomarker and future design controlable via internet of things (IoT) so that why would be monitoring real times.

Funder

Badan Riset dan Inovasi Nasional

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3