Deep-skin third-harmonic generation (THG) imaging in vivo excited at the 2200 nm window

Author:

Chen Xinlin1,Pan Yi1,Qiu Ping1ORCID,Wang Ke1

Affiliation:

1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China

Abstract

The skin is heterogeneous and exerts strong scattering and aberration onto excitation light in multiphoton microscopy (MPM). Shifting to longer excitation wavelengths may help reduce skin scattering and aberration, potentially enabling larger imaging depths. However, previous demonstrations of skin MPM employ excitation wavelengths only up to the 1700[Formula: see text]nm window, leaving an open question as to whether longer excitation wavelengths are suitable for deep-skin MPM. Here, in order to explore the longer-wavelength territory, first, we demonstrate characterization of the broadband transmittance of excised mouse skin, revealing a high transmittance window at 2200[Formula: see text]nm. Then, we demonstrate third-harmonic generation (THG) imaging in mouse skin in vivo excited at this window. With 9[Formula: see text]mW optical power on the skin surface operating at 1[Formula: see text]MHz repetition rate, we can get THG signals of 250[Formula: see text][Formula: see text]m below the skin surface. Comparative THG imaging excited at the 1700[Formula: see text]nm window shows that as imaging depth increases, THG signals decay even faster than those excited at 2200[Formula: see text]nm. Our results thus uncover the 2200[Formula: see text]nm window as a new, promising excitation window potential for deep-skin MPM.

Funder

National Natural Science Foundation of China

The Science and Technology Innovation Commission of Shenzhen

The Science, Technology and Innovation Commission of Shenzhen Municipality

Project funded by China Postdoctoral Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3