Determination of the immunoglobulin G precipitation end-point by an intelligent near-infrared spectroscopy system

Author:

Yu Chen1,Quan Shuang1,Yang Cui1,Zhang Chengliang2,Fan Jiajin3,Li Lian14,Zang Hengchang154

Affiliation:

1. School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China

2. University of Jinan, Jinan, Shandong 250012, P. R. China

3. China Biologic Products Holdings, Inc. Taian, Shandong 271000, P. R. China

4. Key Laboratory of Chemical Biology (Ministry of Education), Shandong University Jinan, Shandong 250012, P. R. China

5. National Glycoengineering Research Center, Shandong University Jinan, Shandong 250012, P. R. China

Abstract

Precipitation is a key manufacturing unit during the immunoglobulin G (IgG) production, which guarantees the quality of the final product. Ethanol is usually used to purify IgG during the precipitation process, so it is important to monitor the ethanol concentration online. Near-infrared (NIR) spectroscopy is a powerful process analytical technology (PAT) which has been proved to be feasible to determine the ethanol concentration during the precipitation process. However, the NIR model is usually established based on the specific process, so a universal model is needed. And the clarity degree of solution will affect the quality of the spectra. Therefore, in this study an integrated NIR system was introduced to establish a universal NIR model which could predict the ethanol concentration online and determine the end-point of the whole process. First, a spectra acquisition device was designed and established in order to get high-quality NIR spectra. Then, a simple prepared ethanol NIR model was constructed to predict the actual manufacturing process. Finally, the end-point was determined to stop the peristaltic pump when the ethanol concentration reached 20%. The results showed that the spectra quality was good, model prediction was accurate, and process monitoring was accurate. In conclusion, all results indicated that the integrated NIR system could be used to monitor the biopharmaceutical process to help us understand the pharmaceutical process.

Funder

National Natural Science Foundation of China

The National Key Research and Development Program of China

The Fundamental Research Funds of Shandong University

Major Innovation Project of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3