Time evolution of quantum correlations in superconducting flux-qubits under classical noises

Author:

Martin Tchoffo1,Arthur Tsamouo Tsokeng1,Collince Fouokeng Georges12,Fai Lukong Cornelius1

Affiliation:

1. Mesoscopic and Multilayer Structure Laboratory, Department of Physics, University of Dschang, P. O. Box 67, Dschang, Cameroon

2. Laboratoire de Genie des Materiaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE), Institut Universitaire de la Côte, P. O. Box 3001 Douala, Cameroon

Abstract

We analyze the dynamics of both entanglement and quantum discord (QD) in a system of two non-interacting flux-qubits initially prepared in a Bell's state and subjected to either static or random telegraph noises (RTNs). Both independent and common sources of system-environment coupling are considered either in the Markovian or non-Markovian regime and the results are compared to those of ordinary qubits. Under suitable conditions, both entanglement and QD are more robust in flux-qubit systems than classical ones. In the Markovian regime where the decay is monotonic, they are both stronger in different environment coupling than in common coupling, while the opposite is found in the non-Markovian regime where the dynamics is stressed by sudden death and revival phenomena, more robust in qubits than in flux-qubits under dynamical RTN. Weakness of revival amplitudes is interpreted as a noise spectrum-related induced interaction affecting quantum features of the system, while energy level non-degeneracy (at zero-splitting) of flux-qubits induces a phase factor that set conditions under which entangled states can be experimentally witnessed in flux-qubit systems. Note that the energy levels non-degeneracy has no particular effect on other entanglement measures apart from entanglement witnesses.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3