Past of a particle in an entangled state

Author:

Paneru Dilip1,Cohen Eliahu2

Affiliation:

1. Department of Electronics and Computer Engineering, Central Campus, Pulchowk, Institute of Engineering, Tribhuvan University, Nepal

2. H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK

Abstract

Vaidman has proposed a controversial criterion for determining the past of a single quantum particle based on the “weak trace” it leaves. We here consider more general examples of entangled systems and analyze the past of single, as well as pairs of entangled pre- and postselected particles. Systems with nontrivial time evolution are also analyzed. We argue that in these cases, examining only the single-particle weak trace provides information which is insufficient for understanding the system as a whole. We therefore suggest to examine, alongside with the past of single particles, also the past of pairs, triplets and eventually the entire system, including higher-order, multipartite traces in the analysis. This resonates with a recently proposed top-down approach by Aharonov, Cohen and Tollaksen for understanding the structure of correlations in pre- and postselected systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lying particles;Frontiers in Quantum Science and Technology;2024-04-03

2. Time-symmetry and topology of the Aharonov–Bohm effect;Journal of Physics A: Mathematical and Theoretical;2023-10-31

3. Weak values and the past of a quantum particle;Physical Review Research;2023-04-21

4. Can future observation of the living partner post-tag the past decayed state in entangled neutral K mesons?;Physical Review D;2022-06-03

5. The discontinuous trajectories of a photon are produced by the continuous propagating paths;Laser Physics;2020-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3