Condition for zero and nonzero discord in graph Laplacian quantum states

Author:

Dutta Supriyo1,Adhikari Bibhas2,Banerjee Subhashish3

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India

2. Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

3. Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India

Abstract

This work is at the interface of graph theory and quantum mechanics. Quantum correlations epitomize the usefulness of quantum mechanics. Quantum discord is an interesting facet of bipartite quantum correlations. Earlier, it was shown that every combinatorial graph corresponds to quantum states whose characteristics are reflected in the structure of the underlined graph. A number of combinatorial relations between quantum discord and simple graphs were studied. To extend the scope of these studies, we need to generalize the earlier concepts applicable to simple graphs to weighted graphs, corresponding to a diverse class of quantum states. To this effect, we determine the class of quantum states whose density matrix representation can be derived from graph Laplacian matrices associated with a weighted directed graph and call them graph Laplacian quantum states. We find the graph theoretic conditions for zero and nonzero quantum discord for these states. We apply these results on some important pure two qubit states, as well as a number of mixed quantum states, such as the Werner, Isotropic, and [Formula: see text]-states. We also consider graph Laplacian states corresponding to simple graphs as a special case.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction of cospectral graphs;Journal of Algebraic Combinatorics;2019-09-24

2. Permutation Symmetric Hypergraph States and Multipartite Quantum Entanglement;International Journal of Theoretical Physics;2019-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3