MODELING FULL ADDER IN ISING SPIN QUANTUM COMPUTER WITH 1000 QUBITS USING QUANTUM MAPS

Author:

KAMENEV D. I.1,BERMAN G. P.1,KASSMAN R. B.2,TSIFRINOVICH V. I.3

Affiliation:

1. Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2. Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

3. IDS Department, Polytechnic University, Six Metrotech Center, Brooklyn, New York 11201, USA

Abstract

The quantum adder is an essential attribute of a quantum computer, just as classical adder is needed for operation of a digital computer. We model the quantum full adder as a realistic complex algorithm on a large number of qubits in an Ising spin quantum computer. Our results are an important step toward effective modeling of the quantum modular adder which is needed for Shor's and other quantum algorithms. Our full adder has the following features. (i) The near-resonant transitions with small detunings are completely suppressed, which allows us to decrease errors by several orders of magnitude and to model a 1000-qubit full adder. (We add a 1000-bit number using 2001 spins.) (ii) We construct the full adder gates directly as sequences of radio-frequency pulses, rather than breaking them down into generalized logical gates, such as Control-Not and one qubit gates. This substantially reduces the number of pulses needed to implement the full adder. (The maximum number of pulses required to add one bit (F-gate) is 15.) (iii) Full adder is realized in a homogeneous spin chain. (iv) The phase error is minimized: the F-gates generate approximately the same phase for different states of the superposition. (v) Modeling of the full adder is performed using quantum maps instead of differential equations. This allows us to reduce the calculation time to a reasonable value.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3