Error-insensitive preparation of entangled states between a Josephson qubit and microwave photons via invariant-based shortcuts
-
Published:2023-10-06
Issue:
Volume:
Page:
-
ISSN:0219-7499
-
Container-title:International Journal of Quantum Information
-
language:en
-
Short-container-title:Int. J. Quantum Inform.
Author:
Yan Run-Ying1ORCID,
Lu Xiao-Jing1ORCID,
Li Ming1ORCID,
Dong Xin-Ping1ORCID,
Yang Fei1ORCID,
Feng Zhi-Bo1ORCID
Affiliation:
1. School of Science, Xuchang University, Xuchang 461000, P. R. China
Abstract
Optimal preparation of quantum entanglement is of significance to information processing and state engineering. In this paper, an efficient scheme is proposed to implement error-insensitive generation of entangled states between a Josephson qubit and microwave photons by the technique of invariant-based shortcuts to adiabaticity. A superconducting qubit is dispersively coupled to a quantized cavity field of one-dimensional transmission line resonator. Within a considered subspace spanned by three composite states, we deal with an effective interaction of the composite system with two classical drivings. A maximally entangled qubit-photon state can be deterministically induced using a splitting-like quantum state transfer. To nullify the deviation errors of Rabi coupling and frequency detuning, we optimize the driving parameters and then make the entanglement creation insusceptible to these control imperfections. Thanks to the mitigation of deviation effects, robustness against the residual noisy environment could be obtained numerically. The proposed strategy could provide a promising avenue towards fast and robust information processing with superconducting circuit quantum electrodynamics.
Funder
Natural Science Foundation of Tianjin Municipal Science and Technology Commission
National Natural Science Foundation of China-Henan Joint Fund
National Natural Science Foundation of China
Key Research Project in Universities of Henan Province
Scientific Research Innovation Team of Xuchang University
Publisher
World Scientific Pub Co Pte Ltd
Subject
Physics and Astronomy (miscellaneous)