Gaussian kernel in quantum learning

Author:

Bishwas Arit Kumar1,Mani Ashish2,Palade Vasile3

Affiliation:

1. AIIT, Amity University Uttar Pradesh, Noida, India

2. EEE, ASET, Amity University Uttar Pradesh, Noida, India

3. Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK

Abstract

The Gaussian kernel is a very popular kernel function used in many machine learning algorithms, especially in support vector machines (SVMs). It is more often used than polynomial kernels when learning from nonlinear datasets and is usually employed in formulating the classical SVM for nonlinear problems. Rebentrost et al. discussed an elegant quantum version of a least square support vector machine using quantum polynomial kernels, which is exponentially faster than the classical counterpart. This paper demonstrates a quantum version of the Gaussian kernel and analyzes its runtime complexity using the quantum random access memory (QRAM) in the context of quantum SVM. Our analysis shows that the runtime computational complexity of the quantum Gaussian kernel is approximated to [Formula: see text] and even [Formula: see text] when [Formula: see text] and the error [Formula: see text] are small enough to be ignored, where [Formula: see text] is the dimension of the training instances, [Formula: see text] is the accuracy, [Formula: see text] is the dot product of the two quantum states, and [Formula: see text] is the Taylor remainder error term. Therefore, the run time complexity of the quantum version of the Gaussian kernel seems to be significantly faster when compared with its classical version.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Reference18 articles.

1. A Pseudoscore Estimator for Regression Problems With Two-Phase Sampling

2. Quantum Support Vector Machine for Big Data Classification

3. L. K. Grover, in Proc. 28th Annual ACM Symposium on the Theory of Computing (May 1996), p. 212.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3