Affiliation:
1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100088, P. R. China
Abstract
Due to its unique optical properties, nitrogen-vacancy centers in diamond show remarkable advantages in realizing quantum information processing and computation. This paper proposes a scalable quantum computing architecture based on solid-state NV centers. In our scheme, logical qubits are encoded in a decoherence-free subspace (DFS) with Larmor pairs (a pair of the nucleus). And the connection between multiple qubits is assisted by a cantilever probe. Then the high fidelity of the universal quantum gate is achieved by using a series of pulses. Our scheme provides physical feasibility for scalable quantum computing and may pave the way for large-scale quantum computing based on NV centers.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Physics and Astronomy (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献