Affiliation:
1. Department of Physics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
2. Physics Department, Faculty of Sciences, Jahrom University, P.O. Box 74135111, Jahrom, Iran
Abstract
In this paper, we address the adiabatic technique for quantum estimation of the azimuthal orientation of a magnetic field. Exactly solving a model consisting of a two-qubit system, where one of which is driven by a static magnetic field while the other is coupled with the magnetic field rotating adiabatically, we obtain the analytical expression of the quantum Fisher information (QFI). We investigate how the two-qubit system can be used to probe the azimuthal direction of the field and analyze the roles of the intensities of the magnetic fields, Dzyaloshinskii–Moriya (DM) interaction, spin–spin coupling coefficient, and the polar orientation of the rotating field on the precision of the estimation. In particular, it is illustrated that the QFI trapping or saturation may occur if the qubit is subjected to a strong rotating field. Moreover, we discuss how the azimuthal direction of the rotating field can be estimated using only the qubit not affected by that field and investigate the conditions under which this strategy is more efficient than use of the qubit locally interacting with the adiabatically rotating field. Interestingly, in the one-qubit scenario, it was found that when the rotating field is weak, the best estimation is achieved by subjecting the probe to a static magnetic field.
Funder
Ministry of Science Research and Technology
Jahrom University
Publisher
World Scientific Pub Co Pte Ltd
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献