Adiabatic quantum estimation: A numerical study of the Heisenberg XX model with antisymmetric exchange

Author:

Shadehi L. Fathi1,Jahromi H. Rangani2ORCID,Ghanaatian M.1

Affiliation:

1. Department of Physics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran

2. Physics Department, Faculty of Sciences, Jahrom University, P.O. Box 74135111, Jahrom, Iran

Abstract

In this paper, we address the adiabatic technique for quantum estimation of the azimuthal orientation of a magnetic field. Exactly solving a model consisting of a two-qubit system, where one of which is driven by a static magnetic field while the other is coupled with the magnetic field rotating adiabatically, we obtain the analytical expression of the quantum Fisher information (QFI). We investigate how the two-qubit system can be used to probe the azimuthal direction of the field and analyze the roles of the intensities of the magnetic fields, Dzyaloshinskii–Moriya (DM) interaction, spin–spin coupling coefficient, and the polar orientation of the rotating field on the precision of the estimation. In particular, it is illustrated that the QFI trapping or saturation may occur if the qubit is subjected to a strong rotating field. Moreover, we discuss how the azimuthal direction of the rotating field can be estimated using only the qubit not affected by that field and investigate the conditions under which this strategy is more efficient than use of the qubit locally interacting with the adiabatically rotating field. Interestingly, in the one-qubit scenario, it was found that when the rotating field is weak, the best estimation is achieved by subjecting the probe to a static magnetic field.

Funder

Ministry of Science Research and Technology

Jahrom University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3