PROPELLER NOISE FROM A LIGHT AIRCRAFT FOR LOW-FREQUENCY MEASUREMENTS OF THE SPEED OF SOUND IN A MARINE SEDIMENT

Author:

BUCKINGHAM MICHAEL J.1,GIDDENS ERIC M.1,SIMONET FERNANDO1,HAHN THOMAS R.1

Affiliation:

1. Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, 8820 Shellback Way, La Jolla, CA 92093-0238, USA

Abstract

The sound from a light aircraft in flight is generated primarily by the propeller, which produces a sequence of harmonics in the frequency band between about 80 Hz and 1 kHz. Such an airborne sound source has potential in underwater acoustics applications, including inversion procedures for determining the wave properties of marine sediments. A series of experiments has recently been performed off the coast of La Jolla, California, in which a light aircraft was flown over a sensor station located in a shallow (approximately 15 m deep) ocean channel. The sound from the aircraft was monitored with a microphone above the sea surface, a vertical array of eight hydrophones in the water column, and two sensors, a hydrophone and a bender intended for detecting shear waves, buried 75 cm deep in the very-fine-sand sediment. The propeller harmonics were detected on all the sensors, although the s-wave was masked by the p-wave on the buried bender. Significant Doppler shifts of the order of 17%, were observed on the microphone as the aircraft approached and departed from the sensor station. Doppler shifting was also evident in the hydrophone data from the water column and the sediment, but to a lesser extent than in the atmosphere. The magnitude of the Doppler shift depends on the local speed of sound in the medium in which the sensor is located. A technique is described in which the Doppler difference frequency between aircraft approach and departure is used to determine the speed of sound at low-frequencies (80 Hz to 1 kHz) in each of the three environments, the atmosphere, the ocean and the sediment. Several experimental results are presented, including the speed of sound in the very fine sand sediment at a nominal frequency of 600 Hz, which was found from the Doppler difference frequency of the seventh propeller harmonic to be 1617 m/s.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3