COMPUTATIONAL ASPECTS OF THE DISCONTINUOUS GALERKIN METHOD FOR THE WAVE EQUATION

Author:

LÄHIVAARA TIMO1,MALINEN MATTI1,KAIPIO JARI P.1,HUTTUNEN TOMI1

Affiliation:

1. Department of Physics, University of Kuopio, P. O. Box 1627, Kuopio, FI-70211, Finland

Abstract

The Discontinuous Galerkin (DG) method is a powerful tool for numerically simulating wave propagation problems. In this paper, the time-dependent wave equation is solved using the DG method for spatial discretization; and the Crank–Nicolson and fourth-order explicit, singly diagonally implicit Runge–Kutta methods, and, for reference, the explicit Runge–Kutta method, were used for time integration. These simulation methods were studied using two-dimensional numerical experiments. The aim of the experiments was to study the effect of the polynomial degree of the basis functions, grid density, and the Courant–Friedrichs–Lewy number on the accuracy of the approximation. The sensitivity of the methods to distorted finite elements was also examined. Results from the DG method were compared with those computed using a conventional finite element method. Three different model problems were considered. In the first experiment, wave propagation in a homogeneous medium was studied. In the second experiment, the scattering and propagation of waves in an inhomogeneous medium were investigated. The third experiment evaluated wave propagation in a more complicated domain involving multiple scattering waves. The results indicated that the DG method provides more accurate solutions than the conventional finite element method with a reduced computation time and a lower number of degrees of freedom.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3