On the consistency problem for modular lattices and related structures

Author:

Herrmann Christian1,Tsukamoto Yasuyuki2,Ziegler Martin3

Affiliation:

1. Technische Universität Darmstadt, FB4 Schloßgartenstr. 7, 64289 Darmstadt, Germany

2. Hakuryo High School, 2260 Amida-cho Amida, Takasago-shi, Hyogo 676-0827, Japan

3. KAIST, School of Computing, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea

Abstract

The consistency problem for a class of algebraic structures asks for an algorithm to decide, for any given conjunction of equations, whether it admits a non-trivial satisfying assignment within some member of the class. For the variety of all groups, this is the complement of the triviality problem, shown undecidable by by Adyan [Algorithmic unsolvability of problems of recognition of certain properties of groups. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 103 (1955) 533–535] and Rabin [Recursive unsolvability of group theoretic problems, Ann. of Math. (2) 67 (1958) 172–194]. For the class of finite groups, it amounts to the triviality problem for profinite completions, shown undecidable by Bridson and Wilton [The triviality problem for profinite completions, Invent. Math. 202 (2015) 839–874]. We derive unsolvability of the consistency problem for the class of (finite) modular lattices and various subclasses; in particular, the class of all subspace lattices of finite-dimensional vector spaces over a fixed or arbitrary field of characteristic [Formula: see text] and expansions thereof, e.g. the class of subspace ortholattices of finite-dimensional Hilbert spaces. The lattice results are used to prove unsolvability of the consistency problem for (finite) rings with unit and (finite) representable relation algebras. These results in turn apply to equations between simple expressions in Grassmann–Cayley algebra and to functional and embedded multivalued dependencies in databases.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3