n-Permutability is not join-prime for n ≥ 5

Author:

Gyenizse Gergő1,Maróti Miklós1,Zádori László1

Affiliation:

1. Bolyai Institute, University of Szeged, Szeged, Aradi Vértanúk tere 1, 6720, Hungary

Abstract

Let [Formula: see text] be the variety generated by an order primal algebra of finite signature associated with a finite bounded poset [Formula: see text] that admits a near-unanimity operation. Let [Formula: see text] be a finite set of linear identities that does not interpret in [Formula: see text]. Let [Formula: see text] be the variety defined by [Formula: see text]. We prove that [Formula: see text] is [Formula: see text]-permutable for some [Formula: see text]. This implies that there is an [Formula: see text] such that [Formula: see text]-permutability is not join-prime in the lattice of interpretability types of varieties. In fact, it follows that [Formula: see text]-permutability where [Formula: see text] runs through the integers greater than 1 is not prime in the lattice of interpretability types of varieties. We strengthen this result by making [Formula: see text] and [Formula: see text] more special. We let [Formula: see text] be the 6-element bounded poset that is not a lattice and [Formula: see text] the variety defined by the set of majority identities for a ternary operational symbol [Formula: see text]. We prove in this case that [Formula: see text] is 5-permutable. This implies that [Formula: see text]-permutability is not join-prime in the lattice of interpretability types of varieties whenever [Formula: see text]. We also provide an example demonstrating that [Formula: see text] is not 4-permutable.

Funder

Ministry for Innovation and Technology, Hungary

EU-funded Hungarian

NKFIH

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taylor is prime;International Journal of Algebra and Computation;2024-07-19

2. On the use of majority for investigating primeness of 3-permutability;International Journal of Algebra and Computation;2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3