Affiliation:
1. ISEA, University of New Caledonia, New Caledonia
2. Department of Mathematics and Statistics, University of South Alabama, USA
Abstract
A polynomial automorphism of [Formula: see text] over a field of characteristic zero is called co-tame if, together with the affine subgroup, it generates the entire tame subgroup. We prove some new classes of automorphisms of [Formula: see text], including nonaffine [Formula: see text]-triangular automorphisms, are co-tame. Of particular interest, if [Formula: see text], we show that the statement “Every [Formula: see text]-triangular automorphism is either affine or co-tame” is true if and only if [Formula: see text]; this improves upon positive results of Bodnarchuk (for [Formula: see text], in any dimension [Formula: see text]) and negative results of the authors (for [Formula: see text], [Formula: see text]). The main technical tool we introduce is a class of maps we term translation degenerate automorphisms; we show that all of these are either affine or co-tame, a result that may be of independent interest in the further study of co-tame automorphisms.
Publisher
World Scientific Pub Co Pte Lt
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Some co-tame automorphisms of affine spaces;International Journal of Algebra and Computation;2021-09-28
2. A PROBLEM ON α-SIMPLE RINGS;JP Journal of Algebra, Number Theory and Applications;2021-06-20
3. Infinite transitivity, finite generation, and Demazure roots;Advances in Mathematics;2019-07