Affiliation:
1. Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Abstract
In this paper, it is shown that, for every non-trivial variety [Formula: see text] of groups, the variety [Formula: see text] of all completely regular semigroups all of whose subgroups belong to [Formula: see text] is minimal in its kernel class in the lattice [Formula: see text] of all varieties of completely regular semigroups, and hence it constitutes, in fact, a singleton kernel class in the lattice [Formula: see text]. Even more generally, it is shown that, for every variety [Formula: see text] of completely simple semigroups which does not consist entirely of rectangular groups, the variety [Formula: see text] of all completely regular semigroups all of whose completely simple subsemigroups belong to [Formula: see text] is minimal in its kernel class in the lattice [Formula: see text], and hence it likewise constitutes a singleton kernel class in the mentioned lattice [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献