TAYLOR TERMS, CONSTRAINT SATISFACTION AND THE COMPLEXITY OF POLYNOMIAL EQUATIONS OVER FINITE ALGEBRAS

Author:

LAROSE BENOIT1,ZÁDORI LÁSZLÓ2

Affiliation:

1. Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve West, Montréal, Qc, Canada, H3G 1M8, Canada

2. Bolyai Intézet, Aradi vértanúk tere 1, H-6720, Szeged, Hungary

Abstract

We study the algorithmic complexity of determining whether a system of polynomial equations over a finite algebra admits a solution. We characterize, within various families of algebras, which of them give rise to an NP-complete problem and which yield a problem solvable in polynomial time. In particular, we prove a dichotomy result which encompasses the cases of lattices, rings, modules, quasigroups and also generalizes a result of Goldmann and Russell for groups [15].

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Satisfiability in MultiValued Circuits;SIAM Journal on Computing;2022-05-05

2. Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP;2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2021-06-29

3. Efficient Verification of Polynomial Completeness of Quasigroups;Lobachevskii Journal of Mathematics;2020-08

4. Satisfiability in multi-valued circuits;Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science;2018-07-09

5. Constraint Satisfaction Problems: Complexity and Algorithms;Language and Automata Theory and Applications;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3