On the existence of primitive normal elements of rational form over finite fields of even characteristic

Author:

Hazarika Himangshu1,Basnet Dhiren Kumar1,Kapetanakis Giorgos2

Affiliation:

1. Department of Mathematical Sciences, Tezpur University, Assam 784028, India

2. Department of Mathematics, University of Thessaly, 3rd km Old National Road Lamia-Athens, 35100 Lamia, Greece

Abstract

Let [Formula: see text] be an even prime power and [Formula: see text] an integer. By [Formula: see text], we denote the finite field of order [Formula: see text] and by [Formula: see text] its extension of degree [Formula: see text]. In this paper, we investigate the existence of a primitive normal pair [Formula: see text], with [Formula: see text] where the rank of the matrix [Formula: see text] is 2. Namely, we establish sufficient conditions to show that nearly all fields of even characteristic possess such elements, except for [Formula: see text] if [Formula: see text] and [Formula: see text] is odd, and then we provide an explicit small list of possible and genuine exceptional pairs [Formula: see text].

Funder

Scientific and Industrial Research, New Delhi

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arithmetic progression in a finite field with prescribed norms;Forum Mathematicum;2024-03-26

2. Pairs of r-Primitive and k-Normal Elements in Finite Fields;Bulletin of the Brazilian Mathematical Society, New Series;2023-04-13

3. Pair of primitive normal elements of rational form over finite fields of characteristic 2;Indian Journal of Pure and Applied Mathematics;2022-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3