The complexity of properties of transformation semigroups

Author:

Fleischer Lukas12,Jack Trevor3

Affiliation:

1. University of Stuttgart, FMI, Universitätsstraße 38, 70569 Stuttgart, Germany

2. School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada

3. Department of Mathematics, University of Colorado, 2300 Colorado Avenue, Boulder, USA

Abstract

We investigate the computational complexity for determining various properties of a finite transformation semigroup given by generators. We introduce a simple framework to describe transformation semigroup properties that are decidable in [Formula: see text]. This framework is then used to show that the problems of deciding whether a transformation semigroup is a group, commutative or a semilattice are in [Formula: see text]. Deciding whether a semigroup has a left (respectively, right) zero is shown to be [Formula: see text]-complete, as are the problems of testing whether a transformation semigroup is nilpotent, [Formula: see text]-trivial or has central idempotents. We also give [Formula: see text] algorithms for testing whether a transformation semigroup is idempotent, orthodox, completely regular, Clifford or has commuting idempotents. Some of these algorithms are direct consequences of the more general result that arbitrary fixed semigroup equations can be tested in [Formula: see text]. Moreover, we show how to compute left and right identities of a transformation semigroup in polynomial time. Finally, we show that checking whether an element is regular is [Formula: see text]-complete.

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Reference11 articles.

1. Issledovaniya po Konstruktivnooĭ Matematike i Matematicheskoĭ Logike. XI;Almeĭda Zh.,2008

2. Complexity Analysis: Transformation Monoids of Finite Automata

3. Finite-automaton aperiodicity is PSPACE-complete

4. Computing finite semigroups

5. London Mathematical Society Monographs (New Series);Howie J. M.,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3