Cogrowth series for free products of finite groups

Author:

Bell Jason1,Liu Haggai2,Mishna Marni2

Affiliation:

1. Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

2. Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

Abstract

Given a finitely generated group with generating set [Formula: see text], we study the cogrowth sequence, which is the number of words of length [Formula: see text] over the alphabet [Formula: see text] that are equal to the identity in the group. This is related to the probability of return for walks on the corresponding Cayley graph. Muller and Schupp proved the generating function of the sequence is algebraic when [Formula: see text] has a finite-index-free subgroup (using a result of Dunwoody). In this work, we make this result effective for free products of finite groups: we determine bounds for the degree and height of the minimal polynomial of the generating function, and determine the minimal polynomial explicitly for some families of free products. Using these results we are able to prove that a gap theorem holds: if [Formula: see text] is a finite symmetric generating set for a group [Formula: see text] and if [Formula: see text] denotes the number of words of length [Formula: see text] over the alphabet [Formula: see text] that are equal to [Formula: see text] then [Formula: see text] is either [Formula: see text], [Formula: see text] or at least [Formula: see text].

Funder

NSERC

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

Reference16 articles.

1. The modular group and words in its two generators*

2. On the complexity of the cogrowth sequence

3. A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy and É. Schost, Algorithmes Efficaces en Calcul Formel, F. Chyzak (auto-édit.) (CreateSpace, Palaiseau, 2017), p. 686 (Aussi disponible en version électronique).

4. ISSAC ’07;Bostan A.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3