The square-freeness of the offset equation to a rational planar curve, computed via resultants

Author:

Alcázar Juan Gerardo1,Caravantes Jorge2,Diaz–Toca Gema M.3

Affiliation:

1. Departamento de Física y Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain

2. Departamento de Álgebra, Universidad Complutense de Madrid, E-28040 Madrid, Spain

3. Departamento de Ingeniería y Tecnología, de Computadores, Universidad de Murcia, E-30100 Murcia, Spain

Abstract

It is well known [Algebraic properties of plane offset curves, Comput. Aided Geom. Des. 7 (1990) 101–127] that an implicit equation of the offset to a rational planar curve can be computed by removing the extraneous components of the resultant of two certain polynomials computed from the parametrization of the curve. Furthermore, it is also well known that the implicit equation provided by the nonextraneous component of this resultant has at most two irreducible factors [Algebraic analysis of offsets to hypersurfaces, Math. Z. 234 (2000) 697–719]. In this paper, we complete the algebraic description of this resultant by showing that the multiplicity of the factors corresponding to the offset can be computed in advance. In particular, when the parametrization is proper, i.e. when the curve is just traced once by the parametrization, we prove that any factor corresponding to a simple component of the offset has multiplicity 1, while the factor corresponding to the special component, if any, has multiplicity 2. Hence, if the parametrization is proper and there is no special component, the nonextraneous part of the resultant is square-free. In fact, this condition is proven to be also sufficient. Therefore, this result provides a simple test to check whether or not the offset of a given rational curve has a special component, and in turn, whether a given rational curve is the offset of another curve.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing Approximation Offsets of Non-Self-Intersecting NURBS Curves;Journal of Computer-Aided Design & Computer Graphics;2022-09-01

2. On the Implicit Equation of Conics and Quadrics Offsets;Mathematics;2021-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3