THE THOMPSON–HIGMAN MONOIDS Mk,i: THE ${\mathcal J}$-ORDER, THE ${\mathcal D}$-RELATION, AND THEIR COMPLEXITY

Author:

BIRGET JEAN-CAMILLE1

Affiliation:

1. Department of Computer Science, Rutgers University at Camden, Camden, NJ 08102, USA

Abstract

The Thompson–Higman groups Gk,i have a natural generalization to monoids, called Mk,i, and inverse monoids, called Invk,i. We study some structural features of Mk,i and Invk,i and investigate the computational complexity of related decision problems. The main interest of these monoids is their close connection with circuits and circuit complexity. The maximal subgroups of Mk,1 and Invk,1 are isomorphic to the groups Gk,j (1 ≤ j ≤ k - 1); so we rediscover all the Thompson–Higman groups within Mk,1. Deciding the Green relations [Formula: see text] and [Formula: see text] of Mk,1, when the inputs are words over a finite generating set of Mk,1, is in P. When a circuit-like generating set is used for Mk,1 then deciding [Formula: see text] is coDP-complete (where DP is the complexity class consisting of differences of sets in NP). The multiplier search problem for [Formula: see text] is xNPsearch-complete, whereas the multiplier search problems of [Formula: see text] and [Formula: see text] are not in xNPsearch unless NP = coNP. The class of search problems xNPsearch is introduced as a slight generalization of NPsearch. Deciding [Formula: see text] for Mk,1 when the inputs are words over a circuit-like generating set, is ⊕k-1• NP -complete; for any h ≥ 2, ⊕h•NP is a modular counting complexity class, whose verification problems are in NP. Related problems for partial circuits are the image size problem (which is # • NP-complete), and the image size modulo h problem (which is ⊕h•NP-complete). For Invk,1 over a circuit-like generating set, deciding [Formula: see text] is ⊕k-1P-complete. It is interesting that the little known complexity classes coDP and ⊕k-1•NP play a central role in Mk,1.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3