Duality for dyadic intervals

Author:

Matczak K.1,Mućka A.2,Romanowska A. B.2

Affiliation:

1. Faculty of Civil Engineering, Mechanics and Petrochemistry in Płock, Warsaw University of Technology, Płock 09-400, Poland

2. Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Warsaw 00-661, Poland

Abstract

In an earlier paper, Romanowska, Ślusarski and Smith described a duality between the category of (real) polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations. This paper is a first step in finding a duality for dyadic polytopes, analogues of real convex polytopes, but defined over the ring [Formula: see text] of dyadic rational numbers instead of the ring of reals. A dyadic [Formula: see text]-dimensional polytope is the intersection with the dyadic space [Formula: see text] of an [Formula: see text]-dimensional real polytope whose vertices lie in the dyadic space. The one-dimensional analogues are dyadic intervals. Algebraically, dyadic polytopes carry the structure of a commutative, entropic and idempotent groupoid under the operation of arithmetic mean. Such dyadic polytopes do not preserve all properties of real polytopes. In particular, there are infinitely many (pairwise non-isomorphic) dyadic intervals. We first show that finitely generated subgroupoids of the groupoid [Formula: see text] are all isomorphic to dyadic intervals. Then, we describe a duality for the class of dyadic intervals. The duality is given by an infinite dualizing (schizophrenic) object, the dyadic unit interval. The dual spaces are certain subgroupoids of the square of the dyadic unit interval with additional constant operations. A second paper deals with a duality for dyadic triangles.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finitely generated dyadic convex sets;International Journal of Algebra and Computation;2023-05

2. Barycentric algebras and beyond;Algebra universalis;2019-05-16

3. Duality for dyadic triangles;International Journal of Algebra and Computation;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3