POLYNOMIAL INDEX GROWTH GROUPS

Author:

BALOG ANTAL1,PYBER LÁSZLÓ1,MANN AVINOAM2

Affiliation:

1. Mathematical Institute of the Hungarian Academy of Sciences, Budapest, P.O.B. 127, H-1364, Hungary

2. Einstein Institute of Mathematics, Hebrew University Givat Ram, Jerusalem 91904, Israel

Abstract

We show that the order of a finite simple of Lie type is bounded by a small constant power of its exponent. This confirms, in a strengthened form, a conjecture of Vaughan-Lee and Zel'manov on the order and exponent of almost simple groups. We also obtain various structural restrictions on groups of polynomial index growth. Combining the above results we construct finitely generated residually finite groups of polynomial index growth which are neither linear nor boundedly generated. This answers questions of Segal and Platonov–Rapinchuk respectively. A further question of Platonov–Rapinchuk concerning a weakened polynomial index growth assumption is also answered.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Adjoint Groups;Proceedings of the Edinburgh Mathematical Society;2019-01-30

2. Random generation of finite and profinite groups and group enumeration;Annals of Mathematics;2011-03-01

3. On the shortest identity in finite simple groups of Lie type;Journal of Group Theory;2011-01-01

4. Finitely generated groups with polynomial index growth;Journal für die reine und angewandte Mathematik (Crelles Journal);2007-01-01

5. BOUNDED GENERATION AND LINEAR GROUPS;International Journal of Algebra and Computation;2003-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3