Affiliation:
1. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Abstract
In this paper, we study the basic problem of counting independent sets in a graph and, in particular, the problem of counting antichains in a finite poset, from an algebraic perspective. We show that neither independence polynomials of bipartite Cohen–Macaulay graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersections ideals, can be evaluated in polynomial time, unless #P = P. Moreover, we present a family of radical zero-dimensional complete intersection ideals JP associated to a finite poset P, for which we describe a universal Gröbner basis. This implies that the bottleneck in computing the dimension of the quotient by JP (that is, the number of zeros of JP) using Gröbner methods lies in the description of the standard monomials.
Publisher
World Scientific Pub Co Pte Lt
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献