Affiliation:
1. School of Mathematics University of Manchester, Alan Turing Building, Manchester, M13 9PL, UK
Abstract
Let L be a free Lie algebra of finite rank over a field K and let Ln denote the degree n homogeneous component of L. Formulae for the dimension of the subspaces [Lm, Ln] for all m and n were obtained by the second author and Michael Vaughan-Lee. In this note we consider subspaces of the form [Lm, Ln, Lk] = [[Lm, Ln], Lk]. Surprisingly, in contrast to the case of a product of two homogeneous components, the dimension of such products may depend on the characteristic of the field K. For example, the dimension of [L2, L2, L1] over fields of characteristic 2 is different from the dimension over fields of characteristic other than 2. Our main results are formulae for the dimension of [Lm, Ln, Lk]. Under certain conditions on m, n and k they lead to explicit formulae that do not depend on the characteristic of K, and express the dimension of [Lm, Ln, Lk] in terms of Witt's dimension function.
Publisher
World Scientific Pub Co Pte Lt
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The dimension of products of n homogeneous components in free lie algebras;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2019-07-01
2. ON THE DIMENSION OF THE PRODUCT [L-2, L-2, L-1] IN FREE LIE ALGEBRAS;INT J GROUP THEORY;2018
3. FREE CENTRE-BY-METABELIAN LIE RINGS;The Quarterly Journal of Mathematics;2013-05-17