Affiliation:
1. Department of Mathematics-IME, University of São Paulo, 05508-090, Rua do Matão 1010, Butanta-São Paulo-SP, Brazil
2. Department of Mathematics, KU Leuven Kulak, 8500, Etienne Sabbelaan 53, Kortrijk, Belgium
Abstract
For [Formula: see text] denote by [Formula: see text] the free group on [Formula: see text] generators and let [Formula: see text]. For [Formula: see text] and elements [Formula: see text], we study orientable quadratic equations of the form [Formula: see text] with unknowns [Formula: see text] and provide explicit solutions for them for the minimal possible number [Formula: see text]. In the particular case when [Formula: see text], [Formula: see text] for [Formula: see text] and [Formula: see text] the minimal number which satisfies [Formula: see text], we provide two types of solutions depending on the image of the subgroup [Formula: see text] generated by the solution under the natural homomorphism [Formula: see text]: the first solution, which is called a primitive solution, satisfies [Formula: see text], the second solution satisfies [Formula: see text]. We also provide an explicit solution of the equation [Formula: see text] for [Formula: see text] in [Formula: see text], and prove that if [Formula: see text], then every solution of this equation is primitive. As a geometrical consequence, for every solution, we obtain a map [Formula: see text] from the orientable surface [Formula: see text] of genus [Formula: see text] to the torus [Formula: see text] which has the minimal number of roots among all maps from the homotopy class of [Formula: see text]. Depending on the number [Formula: see text], such maps have fundamentally different geometric properties: in some cases, they satisfy the Wecken property and in other cases not.
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献