Affiliation:
1. Department of Mathematical Sciences, Binghamton University, Binghamton, NY, 13902-6000, USA
Abstract
Let G be a finitely generated free, free abelian of arbitrary exponent, free nilpotent, or free solvable group, or a free group in the variety AmAn, and let A = {a1,…, ar} be a basis for G. We prove that, in most cases, if S is a subset of a basis for G which may be expressed as a word in A without using elements from {al+1,…, ar} for some l < r, then S is a subset of a basis for the relatively free group on {a1,…, al}.
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献