CRITICAL PERCOLATION OF FREE PRODUCT OF GROUPS

Author:

KOZÁKOVÁ IVA1

Affiliation:

1. Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

Abstract

In this article we study percolation on the Cayley graph of a free product of groups. The critical probability pc of a free product G1 * G2 * ⋯ * Gn of groups is found as a solution of an equation involving only the expected subcritical cluster size of factor groups G1, G2, …, Gn. For finite groups this equation is polynomial and can be explicitly written down. The expected subcritical cluster size of the free product is also found in terms of the subcritical cluster sizes of the factors. In particular, we prove that pc for the Cayley graph of the modular group PSL2(ℤ) (with the standard generators) is 0.5199…, the unique root of the polynomial 2p5 - 6p4 + 2p3 + 4p2 - 1 in the interval (0, 1). In the case when groups Gi can be "well approximated" by a sequence of quotient groups, we show that the critical probabilities of the free product of these approximations converge to the critical probability of G1 * G2 * ⋯ * Gn and the speed of convergence is exponential. Thus for residually finite groups, for example, one can restrict oneself to the case when each free factor is finite. We show that the critical point, introduced by Schonmann, p exp of the free product is just the minimum of p exp for the factors.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Counting self-avoiding walks on free products of graphs;Discrete Mathematics;2017-03

2. Arm exponents in high dimensional percolation;Journal of the American Mathematical Society;2011-05-01

3. Critical surfaces for general inhomogeneous bond percolation problems;Journal of Statistical Mechanics: Theory and Experiment;2010-03-24

4. Critical percolation of virtually free groups and other tree-like graphs;The Annals of Probability;2009-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3