Affiliation:
1. Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
Abstract
We study post-Lie algebra structures on [Formula: see text] for nilpotent Lie algebras. First, we show that if [Formula: see text] is nilpotent such that [Formula: see text], then also [Formula: see text] must be nilpotent, of bounded class. For post-Lie algebra structures [Formula: see text] on pairs of [Formula: see text]-step nilpotent Lie algebras [Formula: see text] we give necessary and sufficient conditions such that [Formula: see text] defines a CPA-structure on [Formula: see text], or on [Formula: see text]. As a corollary, we obtain that every LR-structure on a Heisenberg Lie algebra of dimension [Formula: see text] is complete. Finally, we classify all post-Lie algebra structures on [Formula: see text] for [Formula: see text], where [Formula: see text] is the three-dimensional Heisenberg Lie algebra.
Publisher
World Scientific Pub Co Pte Lt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Post-Lie algebra structures for perfect Lie algebras;Communications in Algebra;2024-05-15
2. Rota–Baxter operators on groups;Proceedings - Mathematical Sciences;2023-02-28