THE RATIONALITY PROBLEM FOR THREE- AND FOUR-DIMENSIONAL PERMUTATIONAL GROUP ACTIONS

Author:

MICHAILOV IVO MICHAILOV1

Affiliation:

1. Faculty of Mathematics and Informatics, Constantin Preslavski University, Universitetska str. 115, 9700 Shumen, Bulgaria

Abstract

Assume that K is a field, containing the full group of 4th roots of unity μ4, and char K ≠2, 3. Let G be a finite non-abelian subgroup of GL n(K) for n = 3 or n = 4. The group G induces an action on K(x1,…,xn), the rational function field of n variables over K. Consider groups represented by matrices such that in each row and column there is exactly one element from μ4 and all other elements are 0. With the aid of GAP [3] we find that there are precisely 230 such non-abelian groups in SL 4(K) and 33 in GL 3(K), up to conjugacy. We show that the fixed subfield K(x1,…,xn)G is rational (i.e. purely transcendental) over K for every such group G. We also give a positive answer to the Noether's problem for several families of groups of order m = 2a ⋅ 3b, where a ≥ 2 and b = 0, 1.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3