Affiliation:
1. Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA
2. Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, USA
Abstract
We analyze the complexity of ascendant sequences in locally nilpotent groups, showing that if G is a computable locally nilpotent group and x0, x1, …, xN ∈ G, N ∈ ℕ, then one can always find a uniformly computably enumerable (i.e. uniformly [Formula: see text]) ascendant sequence of order type ω + 1 of subgroups in G beginning with 〈x0, x1, …, xN〉G, the subgroup generated by x0, x1, …, xN in G. This complexity is surprisingly low in light of the fact that the usual definition of ascendant sequence involves arbitrarily large ordinals that index sequences of subgroups defined via a transfinite recursion in which each step is incomputable. We produce this surprisingly low complexity sequence via the effective algebraic commutator collection process of P. Hall, and a related purely algebraic Normal Form Theorem of M. Hall for nilpotent groups.
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献