SLP compression for solutions of equations with constraints in free and hyperbolic groups

Author:

Diekert Volker1,Kharlampovich Olga2,Moghaddam Atefeh Mohajeri3

Affiliation:

1. Formale Methoden der Informatik (FMI), Universität Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

2. Department of Mathematics and Statistics, Hunter College and Graduate Center, CUNY, 695 Park Ave, New York, 10065, USA

3. Department Mathematics and Statistics, McGill University, Montreal, Canada, H3A 0B9, Canada

Abstract

The paper is a part of an ongoing program which aims to show that the problem of satisfiability of a system of equations in a free group (hyperbolic or even toral relatively hyperbolic group) is NP-complete. For that, we study compression of solutions with straight-line programs (SLPs) as suggested originally by Plandowski and Rytter in the context of a single word equation. We review some basic results on SLPs and give full proofs in order to keep this fundamental part of the program self-contained. Next we study systems of equations with constraints in free groups and more generally in free products of abelian groups. We show how to compress minimal solutions with extended Parikh-constraints. This type of constraints allows to express semi-linear conditions as e.g. alphabetic information. The result relies on some combinatorial analysis and has not been shown elsewhere. We show similar compression results for Boolean formula of equations over a torsion-free δ-hyperbolic group. The situation is much more delicate than in free groups. As byproduct we improve the estimation of the "capacity" constant used by Rips and Sela in their paper "Canonical representatives and equations in hyperbolic groups" from a double-exponential bound in δ to some single-exponential bound. The final section shows compression results for toral relatively hyperbolic groups using the work of Dahmani: We show that given a system of equations over a fixed toral relatively hyperbolic group, for every solution of length N there is an SLP for another solution such that the size of the SLP is bounded by some polynomial p(s + log N) where s is the size of the system.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3