Affiliation:
1. Department of Mathematics — IME, University of São Paulo, Caixa Postal 66281, São Paulo, SP, 05314-970, Brazil
Abstract
For any Lie algebra L over a field, its universal enveloping algebra U(L) can be embedded in a division ring 𝔇(L) constructed by Lichtman. If U(L) is an Ore domain, 𝔇(L) coincides with its ring of fractions. It is well known that the principal involution of L, x ↦ -x, can be extended to an involution of U(L), and Cimpric proved that this involution can be extended to one on 𝔇(L). For a large class of noncommutative Lie algebras L over a field of characteristic zero, we show that 𝔇(L) contains noncommutative free algebras generated by symmetric elements with respect to (the extension of) the principal involution. This class contains all noncommutative Lie algebras such that U(L) is an Ore domain.
Publisher
World Scientific Pub Co Pte Lt
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献