Ring properties related to symmetric rings

Author:

Jung Da Woon1,Kwak Tai Keun2,Lee Min Jung3,Lee Yang3

Affiliation:

1. Department of Mathematics, Pusan National University, Pusan 609-735, Korea

2. Department of Mathematics, Daejin University, Pocheon 487–711, Korea

3. Department of Mathematics Education, Pusan National University, Pusan 609-735, Korea

Abstract

The study of symmetric rings has important roles in ring theory and module theory. We investigate the structure of ring properties related to symmetric rings and introduce H-symmetric and π-symmetric as generalizations. We construct a non-symmetric reversible ring whose basic structure is infinite-dimensional, comparing with the finite-dimensional such rings of Anderson, Camillo and Marks. The structure of π-reversible rings (with or without identity) of minimal order is completely investigated. The properties of zero-dividing polynomials over IFP rings are studied more to show that polynomial rings over symmetric rings are π-symmetric. It is also proved that all conditions in relation with our arguments in this paper are equivalent for regular or locally finite rings.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3