REVERSIBLE SYSTOLIC ARRAYS: m-ARY BIJECTIVE SINGLE-INSTRUCTION MULTIPLE-DATA (SIMD) ARCHITECTURES AND THEIR QUANTUM CIRCUITS

Author:

AL-RABADI ANAS N.1

Affiliation:

1. The University of Jordan, Computer Engineering Department, Amman 11942, Jordan

Abstract

New type of m-ary systolic arrays called reversible systolic arrays is introduced in this paper. The m-ary quantum systolic architectures' realizations and computations of the new type of systolic arrays are also introduced. A systolic array is an example of a single-instruction multiple-data (SIMD) machine in which each processing element (PE) performs a single simple operation. Systolic devices provide inexpensive but massive computation power, and are cost-effective, high-performance, and special-purpose systems that have wide range of applications such as in solving several regular and compute-bound problems containing repetitive multiple operations on large arrays of data. Similar to the classical case, information in a reversible and quantum systolic circuit flows between cells in a pipelined fashion, and communication with the outside world occurs only at the boundary cells. Since basic PEs used in the construction of arithmetic systolic arrays are the add–multiply cells, the results introduced in this paper are general and apply to a very wide range of add–multiply-based systolic arrays. Since the reduction of power consumption is a major requirement for the circuit design in future technologies, such as in quantum computing, the main features of several future technologies will include reversibility. Consequently, the new systolic circuits can play an important task in the design of future circuits that consume minimal power. It is also shown that the new systolic arrays maintain the high level of regularity while exhibiting the new fundamental bijectivity (reversibility) and quantum superposition properties. These new properties will be essential in performing super-fast arithmetic-intensive computations that are fundamental in several future applications such as in multi-dimensional quantum signal processing (QSP).

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3